

Requirements for Functional Models of the Iron Hydrogenase Active Site: D_2/H_2O Exchange Activity in {(μ -SMe)(μ -pdt)[Fe(CO)₂(PMe₃)]₂⁺}[BF₄⁻]

Irene P. Georgakaki, Matthew L. Miller, and Marcetta Y. Darensbourg*

Department of Chemistry, Texas A&M University, College Station, Texas 77843

Received September 5, 2002

Hydrogen uptake in hydrogenase enzymes can be assayed by H/D exchange reactivity in H₂/D₂O or H₂/D₂/H₂O mixtures. Diiron(I) complexes that serve as structural models for the active site of iron hydrogenase are not active in such isotope scrambling but serve as precursors to Fe^{II}Fe^{II} complexes that are functional models of [Fe]H₂ase. Using the same experimental protocol as used previously for { $(\mu$ -H)(μ -pdt)[Fe(CO)₂(PMe₃)]₂+}, **1-H**⁺ (Zhao et al. *J. Am. Chem. Soc.* **2001**, *123*, 9710), we now report the results of studies of { $(\mu$ -SMe)(μ -pdt)[Fe(CO)₂(PMe₃)]₂+}, **1-SMe**⁺, toward H/D exchange. The **1-SMe**⁺ complex can take up H₂ and catalyze the H/D exchange reaction in D₂/H₂O mixtures under photolytic, CO-loss conditions. Unlike **1-H**⁺, it does not catalyze H₂/D₂ scrambling under anhydrous conditions. The molecular structure of **1-SMe**⁺ involves an elongated Fe····Fe separation, 3.11 Å, relative to 2.58 Å in **1-H**⁺. It is proposed that the strong SMe⁻ bridging ligand results in catalytic activity localized on a single Fe^{II} center, a scenario that is also a prominent possibility for the enzyme active site. The single requirement is an open site on Fe^{II} available for binding of D₂ (or H₂), followed by deprotonation by the external base H₂O (or D₂O).

Introduction

The connection between enzymes that take up and activate molecular hydrogen and noble metals that show similar functions has intrigued scientists since the discovery of hydrogenases in 1931.¹ The recent wave of attention has been fueled by protein crystal structures which provide striking snapshots of binuclear active sites in both nickel—iron² and iron hydrogenases.³ The similarity of the active site structure

10.1021/ic026005+ CCC: \$25.00 © 2003 American Chemical Society Published on Web 02/11/2003

of Fe-only hydrogenase, [Fe]H₂ase, to easily synthesized and well-known dinuclear Fe^IFe^I organometallic complexes⁴ (Figure 1a and b, respectively) has inspired the preparation of derivatives modified in such a way to better mimic the features of the enzyme active site.⁵ Whereas the enzyme is characterized by at least three different oxidation levels, mixed-valent Fe^IFe^{II} is a prominent candidate for the form that is responsible for H₂ uptake; heterolytic (H⁺/H⁻) cleavage; and, by microscopic reversibility, H₂ production and evolution.⁶

^{*} Author to whom correspondence should be addressed. E-mail: marcetta@mail.chem.tamu.edu.

⁽¹⁾ Stephenson, M.; Stickland, L. H. Biochem. J. 1931, 25, 205.

^{(2) (}a) Volbeda, A.; Charon, M.-H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. *Nature* 1995, 373, 580. (b) Volbeda, A.; Garcin, E.; Piras, C.; De Lacey, A. L.; Fernandez, V. M.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. J. Am. Chem. Soc. 1996, 118, 12989. (c) Garcin, E.; Vernede, X.; Hatchikian, E. C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J. C. Structure 1999, 7, 557. (d) Higuchi, Y.; Yagi, T.; Yasuoka, N. Structure 1997, 5, 1671. (e) Higuchi, Y.; Ogata, H.; Miki, K.; Yasuoka, N.; Yagi, T. Structure 1999, 7, 549.

^{(3) (}a) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. *Science* **1998**, 282, 1853. (b) Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. *Structure* **1999**, 7, 13. (c) Nicolet, Y.; De Lacey, A. L.; Vernéde, X.; Fernandez, V. M.; Hatchikian, E. C.; Fontecilla-Camps, J. C. *J. Am. Chem. Soc.* **2001**, *123*, 1596. (d) Lemon, B. J.; Peters, J. W. *Biochemistry* **1999**, *38*, 12969.

⁽⁴⁾ Seyferth, D.; Womack, G. B.; Gallagher, M. K.; Cowie, M.; Hames, B. W.; Fackler, J. P., Jr.; Mazany, A. M. Organometallics 1987, 6, 283.

^{(5) (}a) Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. Angew. Chem., Int. Ed. 1999, 38, 3178. (b) Schmidt, M.; Contakes, S. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 1999, 121, 9736.
(c) Le Cloirec, A.; Best, S. P.; Borg, S.; Davies, S. C.; Evans, D. J.; Hughes, D. L.; Pickett, C. J. Chem. Commun. 1999, 2285. (d) Lawrence, J. D.; Li, H.; Rauchfuss, T. B.; Bénard, M.; Rohmer, M.-M. Angew. Chem., Int. Ed. 2001, 40, 1768. (e) Razavet, M.; Davies, S. C.; Hughes D. L.; Pickett, C. J. Chem. Commun. 2001, 847.

^{(6) (}a) Popescu, C. V.; Münck, E. J. Am. Chem. Soc. 1999, 121, 7877.
(b) Pereira, A. S.; Tavares, P.; Moura, I.; Moura, J. J. G.; Huynh, B. H. J. Am. Chem. Soc. 2001, 123, 2771. (c) De Lacey, A. L.; Stadler, C.; Cavazza, C.; Hatchikian, E. C.; Fernandez, V. M. J. Am. Chem. Soc. 2000, 122, 11232. (d) Bennett, B.; Lemon, B. J.; Peters, J. W. Biochemistry 2000, 39, 7455.

Figure 1. Stick drawing structures of (a) active site of $[Fe]H_{2}ase,^{3}$ (b) ground state of $(\mu$ -pdt)Fe₂(CO)₆, (c) calculated transition state of Fe(CO)₃ unit rotation in $(\mu$ -pdt)Fe₂(CO)₆,⁸ and (d) a spectroscopically observed Fe^{II}-Fe^I complex.⁷

The synthesis of mixed-valent complexes is not easily achieved in the chemist's laboratory. A recent spectroelectrochemical study provided evidence for such an Fe^{II}Fe^I species generated by one-electron oxidation of a diiron(I) model.⁷ The mixed-valent product is a good spectroscopic match for the CO-inhibited oxidized form of the enzyme,^{3d} resulting in the proposed structure shown in Figure 1d. The bridging carbonyl of the Fe^{II}Fe^I complex has not heretofore been observed in (μ -SRS)[Fe^I(CO)₂L]₂ model complexes. Nevertheless, DFT computations suggest an analogous structure as a transition state for a rotation process that equilibrates CO ligands in individual Fe(CO)₃ units as seen in ¹³C NMR spectra. This rotation accounts for the observed fluxionality or intramolecular site exchange that interchanges CO_{apical} with CO_{basal} (Figure 1c).⁸

Although the electrochemically generated Fe^{II}Fe^I species has not, as yet, been isolated, homovalent Fe^{II}Fe^{II} complexes are readily obtained from Fe^IFe^I precursors via the binuclear oxidative addition of electrophiles such as H⁺ or SMe^{+,9} Reaction of (μ -pdt)[Fe(CO)₂(PMe₃)]₂, complex **1** (pdt = SCH₂CH₂CH₂CS), with H⁺ or SMe⁺ produces {(μ -H)(μ -pdt)-[Fe(CO)₂(PMe₃)]₂⁺}, **1-H**⁺,¹⁰ or {(μ -SMe)(μ -pdt)[Fe(CO)₂-(PMe₃)]₂⁺}, **1-SMe**⁺, respectively, with concomitant blue shifts in the ν (CO) IR spectrum (Figure 2). The role of the PMe₃ ligands, analogues to cyanide in the enzyme active site, is to both increase the electron density in the Fe^IFe^I bond and to stabilize the Fe^{II}Fe^{II} oxidation level following oxidative addition.

- (7) Razavet, M.; Borg, S. J.; George, S. J.; Best, S. P.; Fairhurst, S. A.; Pickett, C. J. Chem. Commun. 2002, 700.
- (8) (a) Georgakaki, I. P.; Thomson, L. M.; Lyon, E. J.; Hall, M. B.; Darensbourg, M. Y. *Coord. Chem. Rev.*, manuscript submitted. (b) Lyon, E. J.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. *J. Am. Chem. Soc.* **2001**, *123*, 3268.
- (9) (a) Fauvel, K.; Mathieu, R.; Poilblanc, R. *Inorg. Chem.* **1976**, *15*, 976.
 (b) Savariault, J.-M.; Bonnet, J.-J.; Mathieu, R.; Galy, J. C. R. Acad. Sci. **1977**, *284*, C663. (c) Lyons, L. J.; Anderson, L. L.; Crane, R. A.; Treichel, P. M. Organometallics **1991**, *10*, 587. (d) Treichel, P. M.; Crane, R. A.; Matthews, R.; Bonnin, K. R.; Powell, D. J. Organomet. Chem. **1991**, *402*, 233.
- (10) Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Yarbrough, J. C.; Darensbourg, M. Y. J. Am. Chem. Soc. 2001, 123, 9710.

Figure 2. Stick drawing structures and infrared spectra of 1, $1\text{-}H^+\text{,}$ and $1\text{-}SMe^+\text{.}$

As early as 1934, Farkas, Farkas, and Yudkin demonstrated that hydrogenase from *B. coli* (*Balantidium coli*) catalyzed the isotope exchange reaction between D₂O and H₂.¹¹ This reactivity, together with ortho/para H2 interconversion, the mechanism of which was studied in detail by Krasna and Rittenberg,¹² has provided the basis for hydrogenase activity assays that typically demonstrate H₂ uptake as indicated by H/D exchange in H₂/D₂O mixtures.¹³ Mixtures of H₂/D₂ have also been reported to show scrambling,14 presumably via H2O mediation. On the basis of such test reactions, our previous studies indicated that the diiron(II) complex, 1-H⁺, serves as a functional model of [Fe]H₂ase in the catalytic isotopic scrambling of D₂/H₂O and H₂/D₂ mixtures.^{10,15} During these processes, all of which require photolysis, 1-H⁺ becomes $1-D^+$, indicating involvement of the bridging hydride in the isotope exchange mechanism. Intermediates such as structures A and B, call upon the μ -H to shift to a terminal position and serve as an internal base under anhydrous conditions to deprotonate the proximate $(\eta^2-H_2)Fe^{II}$ moiety. A weak external base such as H₂O can also deprotonate the acidic (η^2 -H₂)Fe^{II} intermediate.¹⁶

- (11) Farkas, A.; Farkas, L.; Yudkin, J. Proc. R. Soc. (London) **1934**, B115, 373.
- (12) Krasna, A. I.; Rittenberg, D. J. Am. Chem. Soc. 1954, 76, 3015.
- (13) (a) Adams, M. W. W.; Mortenson, L. E.; Chen, J.-S. *Biochim. Biophys. Acta* 1981, 594, 105. (b) Albracht, S. P. J. *Biochim. Biophys. Acta* 1994, 1188, 167.
- (14) Yagi, T. J. Biochem. 1970, 68, 649.
- (15) Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Mejia-Rodriguez, R.; Chiang, C.-Y.; Darensbourg, M. Y. Inorg. Chem. 2002, 41, 3917.
- (16) Landau, S. E.; Morris, R. H.; Lough, A. J. Inorg. Chem. 1999, 38, 6060.

Because an open site on Fe can, under photolysis, be created by a hydride shift or by CO loss, we questioned whether the hydride was a requirement for the heterolytic H_2/H_2O or D_2/H_2O cleavage reaction. Hence, the following study was designed to assess the requirement of a H⁻ ligand in candidates for H_2 ase functional models.

Experimental Section

Materials and Techniques. All manipulations were performed using standard Schlenk-line and syringe/rubber-septa techniques under N_2 or in an argon atmosphere glovebox. Solvents were of reagent grade and purified as follows: Dichloromethane was distilled over P_2O_5 under N_2 . Acetonitrile was distilled once from CaH₂, distilled once from P_2O_5 , and freshly distilled from CaH₂ immediately before use. Diethyl ether was distilled from sodium/ benzophenone under N_2 . The following materials were of reagent grade and used as received: $Fe_3(CO)_{12}$, 1,3-propanedithiol, MeSS-Me, Me₃OBF₄ and NH₄PF₆ (Aldrich Chemical Co.); deuterated solvents and D_2 (Cambridge Isotope Laboratories).

Infrared spectra were recorded on a Mattson 6021 FTIR spectrometer with DTGS and MCT detectors. ¹H, ¹³C, and ³¹P NMR (85% H₃PO₄ was used as an external reference) spectra were recorded on a Unity+ 300-MHz superconducting NMR instrument operating at 299.9, 75.43, and 121.43 MHz, respectively. ²H NMR spectra were recorded on a Unity Inova-400 NMR instrument with a 5-mm autoswitchable probe operating at 61.35 MHz and on a VXR-300 NMR instrument operating at 46.05 MHz.

Preparations. The neutral dinuclear iron compounds were prepared according to literature procedures.¹⁵

[**Me₂SSMe⁺][BF₄⁻].** Following the published procedure,¹⁷ a solution containing 0.74 mL of methyl disulfide (8.06 mmol) in \sim 7 mL of CH₃CN was added dropwise to an equimolar amount of Me₃O⁺BF₄⁻ (1.04 g, 8.06 mmol) dissolved in \sim 8 mL of CH₃CN at 0 °C. After the mixture had been stirred for \sim 2 h at 0 °C, dry ether was added to precipitate dimethylthiomethylsulfonium fluoroborate ([Me₂SSMe⁺][BF₄⁻]) as a white solid that was stored in the glovebox at -36 °C (1.1 g; yield, 69%).

Synthesis of {(μ -SMe)(μ -pdt)[Fe(CO)₂(PMe₃)]₂⁺}[BF₄⁻]. A red solution of 0.97 g of (μ -pdt)[Fe(CO)₂(PMe₃)]₂ (2 mmol) in ~50 mL of dry CH₂Cl₂ was transferred via cannula into a Schlenk flask containing 0.41 g (2 mmol) of [Me₂SSMe⁺][BF₄⁻]. Following overnight stirring at 22 °C, the IR spectrum [ν (CO) region] showed the presence of a mixture of the neutral precursor and the cationic product in the brown solution. After the mixture had been fitered through Celite under Ar and concentrated in a vacuum, dry Et₂O was added to precipitate the product and remove the unreacted neutral complex, **1**. Crystals suitable for an X-ray crystal structure determination were grown from CH₂Cl₂ solutions layered with Et₂O at -5 °C. Infrared spectrum, ν (CO), CH₂Cl₂: 2038(m), 2024(s), 1981(s) cm⁻¹. Because of the difficulty in isolating the product in the solid form as its BF₄⁻ salt, the PF₆⁻ salt was prepared by ion exchange reaction of {(μ -SMe)(μ -pdt)[Fe(CO)₂(PMe₃)]₂⁺}[BF₄⁻]

(17) Smallcombe, S. H.; Caserio, M. C.J. Am. Chem. Soc. 1971, 93, 5826.

with saturated aqueous solution of NH_4PF_6 in MeOH. The solid was collected, washed with H_2O and Et_2O , and dried in air (0.6 g; yield, 44%). ³¹P NMR, acetone-d⁶: 20.95 (PMe₃) and -142.7 ppm (PF₆⁻). Elemental analysis, calculated for $Fe_2C_{14}H_{27}S_3O_4P_3F_6$ (found)%: C, 24.92 (24.66); H, 4.00 (4.03).

Test for Catalytic Formation of HD in H_2/D_2 Mixture. A medium-pressure NMR tube (Wilmad, 528-PV-7) was charged with a solution containing 20 mg of { $(\mu$ -SMe)(μ -pdt)[Fe(CO)₂(PMe₃)]₂+}-[PF₆⁻] in 1 g of CD₂Cl₂. The tube was then pressurized with 5 bar H₂ and with D₂ to a total pressure of 10 bar and exposed to sunlight. ¹H NMR spectra were taken daily over the course of 8 days to check the formation of HD. None was observed.

H/D Exchange in D₂/H₂O Mixture. A 0.8-mL portion of a solution made from 0.15 g of [**1-SMe**⁺][PF₆⁻] in 3 mL of CH₂Cl₂ was put in a medium-pressure NMR tube together with 2 μ L of H₂O. The tube was pressurized with 10 bar D₂ and exposed to sunlight. ²H NMR spectra were taken at time intervals to follow the formation of HOD.

¹³CO Exchange Experiment in $[(\mu-SMe)(\mu-pdt)(Fe(CO)_2-PMe_3)_2^+][PF_6^-]$. A 0.7-mL portion of a solution made from 23 mg of $[1-SMe^+][PF_6^-]$ in 1.6 mL of d⁶-acetone was transferred into a medium-pressure NMR tube. The tube was lightly degassed, filled with 20 psi ¹³CO, and exposed to sunlight. The ¹³C NMR spectrum after 1 day showed two doublets (208.95 and 208.07 ppm, $J_{C-P} = 19.5$ and 14.6 Hz, respectively) in the CO region, indicating the incorporation of ¹³CO into the complex. The ν (CO) infrared spectrum in CH₂Cl₂ showed a shift of the stretching frequencies to lower wavenumbers consistent with ¹³CO/¹²CO exchange in **1-SMe**⁺. Infrared spectrum, ν (CO) region: ν (CO), **1-SMe**⁺ 2038, 2024, 1981; ν (CO), ¹³CO-enriched **1-SMe**⁺ 2020, 1981, 1947 cm⁻¹.

X-ray Structure Determination. A single crystal was mounted on a glass fiber at 110 K. The X-ray data were collected on a Bruker Smart 1000 CCD diffractometer and covered a hemisphere of reciprocal space by a combination of three sets of exposures. The space group was determined on the basis of systematic absences and intensity statistics. Crystal data for [1-SMe⁺][BF₄⁻]: C₁₄H₂₇- $O_4P_2S_3BF_4Fe_2$, M = 616.01, orthorhombic, space group *Pnma*, *a* = 14.79(3) Å, b = 12.54(2) Å, c = 12.98(2) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 2408(7) Å³, Z = 4, $D_c = 1.699$ g cm⁻³. The structure was solved by direct methods. Hydrogen atoms were placed at idealized positions and refined with fixed isotropic displacement parameters. The pdt bridge was refined with "envelope-flap" disorder. Anisotropic refinement for all non-hydrogen atoms was done by a full-matrix least-squares method with R1 = 0.0592 and wR2 = 0.0956. Programs used include SMART¹⁸ for data collection and cell refinement, SAINTPLUS¹⁹ for data reduction, SHELXS-86 (Sheldrick)²⁰ for structure solution, SHELXL-97 (Sheldrick)²¹ for structure refinement, and SHELXTL-Plus, version 5.1 or later (Bruker),²² for molecular graphics and preparation of material for publication.

Results and Discussion

Reaction of $(\mu$ -pdt)[Fe(CO)₂(PMe₃)]₂, **1**, with the SMe⁺ synthon, [Me₂SSMe⁺][BF₄⁻], in CH₂Cl₂ results in the

- (18) SMART 1000 CCD; Bruker Analytical X-ray Systems: Madison, WI, 1999.
- (19) SAINT-Plus, version 6.02; Bruker: Madison, WI, 1999.
- (20) Sheldrick, G. SHELXS-86: Program for Crystal Structure Solution; Institüt für Anorganische Chemie, Universität Gottingen: Gottingen, Germany, 1986.
- (21) Sheldrick, G. SHELXL-97: Program for Crystal Structure Refinement; Institüt für Anorganische Chemie, Universität Gottingen: Gottingen, Germany, 1997.
- (22) SHELXTL, version 5.1 or later; Bruker: Madison, WI, 1998.

Figure 3. Thermal ellipsoid representation (30% probability) of the molecular structure of $1-SMe^+$.

Table 1. Selected Metric Data for 1, 1-H⁺, and 1-SMe⁺

	1	$1-H^+$	1-SMe ⁺
Fe•••Fe	2.555(2)	2.5784(8)	3.109
S•••S	3.026	3.064	2.976
Fe-P	2.234(3)	2.2523(12)	2.257(4)
Fe-CO _{ap}	1.772(9)	1.779(4)	1.774(11)
Fe-CO _{ba}	1.742(10)	1.778(4)	1.764(10)
Fe-S(pdt-br) ^a	2.254(2)	2.2717(11)	2.324(4)
Fe-SMe	N/A	N/A	2.304(4)
Fe-S-Fe ^a	69.06(8)	69.15(4)	84.0(2)
S-Fe-S ^a	84.34(11)	84.77(4)	79.50(14)
Fe dsp ^b	0.376	0.231	0.153

^{*a*} Average of all equivalent bonds and angles. ^{*b*} Fe dsp = average displacement of the Fe atoms out of the best planes defined by the two S's of the pdt bridge, C of basal CO, and P atoms.

formation of { $(\mu$ -SMe) $(\mu$ -pdt)[Fe(CO)₂(PMe₃)]₂+}[BF₄-], **1-SMe**⁺. Crystals of [**1-SMe**⁺][**B**F₄-] suitable for X-ray structure determination were grown in CH₂Cl₂ solution layered with Et₂O at -5 °C. The descriptions of **1-SMe**⁺, as a stick drawing Figure 2 and a thermal ellipsoid plot in Figure 3, display the molecular structure as a bioctahedron, face-bridged by three thiolates.

For the neutral precursor 1 and other (μ -SRS)[Fe^I(CO)₂L]₂ complexes, which are described as edge-bridged bisquare pyramids, the positions of the L ligands are defined as apical, basal, cisoid, and transoid. Although the oxidative addition products **1-H**⁺ and **1-SMe**⁺ are face-bridged bioctahedra, we have retained the designations for the L positions from the neutral precursor. As defined by crystallography, the repositioning of the PMe₃ ligands from the basal/basal transoid conformation in **1** and **1-H**⁺¹⁰ to basal/basal cisoid in **1-SMe**⁺ minimizes steric interactions of the PMe₃ ligands with the SMe bridge. The shift in the ν (CO) IR spectral values as **1** is converted to **1-SMe**⁺ is similar to that for **1-H**⁺, i.e., approximately +70 cm⁻¹ (Figure 2). The change in pattern, i.e., the splitting of the high-frequency band into two, is evidence of the change in symmetry described above.

Key structural metric data for 1, 1-H⁺, and 1-SMe⁺ are listed in Table 1. The dramatic increase in the Fe····Fe distance of ca. 0.5 Å with the four-electron donor SMe⁻ as the bridge has several consequences. The average of the Fe– S–Fe angle increases to $84.0(2)^{\circ}$ in 1-SMe⁺, from the average of 69° in the parent 1 and 1-H⁺, resulting in a flattening of the Fe₂(pdt-S)₂ core without significant change in the S···S cross-ring distance. The FeS₂C₃ metallodithiocyclohexane rings are maintained in the typical chair/boat configuration with normal distances. An additional consequence of the four-electron-donor μ -SMe⁻ vs the twoelectron-donor μ -H⁻ bridge is the increased octahedral character of the FeS₃(CO)₂PMe₃ coordination spheres. As measured by the displacement of the Fe from the (pdt-S₂)-(CO)(P) plane, the value is ~0.38 Å in complex 1, which has the two electrons of the Fe–Fe bond in the sixth coordination position; it decreases to 0.23 Å in 1-H⁺ and decreases further in 1-SMe⁺ to 0.15 Å.

Activity of 1-SMe⁺ as an H/D Exchange Catalyst. Reactivity studies of 1-SMe⁺ were based on the experimental protocol used to explore the H₂ activation and H/D exchange capabilities of **1-H**⁺ and analogues.^{10,15} To establish whether the μ -SMe moiety might exchange with D⁻ derived from D_2 , a medium-pressure NMR tube containing [1-SMe⁺]- $[PF_6^-]$ in CH₂Cl₂ was pressurized with 10 bar D₂ and exposed to sunlight as described in the Experimental Section. The ²H NMR monitor found no $(\mu$ -D)Fe₂⁺ or MeSD formed (eq 1). In the same time period, significant amounts of H/D exchange was observed for 1-H⁺/D₂ mixtures.^{10,15} Similarly to the experiment with $1-H^+$, H_2/D_2 gaseous mixtures were introduced into an anhydrous CD₂Cl₂ solution of 1-SMe⁺. In the absence of light, as well as with extended periods of photolysis (sunlight for 8 days or more), no HD was observed in the ¹H NMR spectrum (eq 2). Under the same conditions, **1-H**⁺ showed extensive scrambling of isotopes (formation of HD from H₂ and D₂ as well as formation of 1-D⁺).^{10,15}

1-SMe⁺ + D₂
$$\longrightarrow$$
 DSMe + 1-D⁺ (1)
H₂ + D₂ $\xrightarrow{1-SMe^+}$ 2 HD (2)

$$D_2 + H_2O \xrightarrow{1-SMe^+} HD + HOD$$
 (3)

In contrast, mixtures of D_2 and H_2O show substantial H/D exchange with both **1-SMe**⁺ and **1-H**⁺ as catalysts (eq 3). A sample containing **1-SMe**⁺ and 2 μ L of H₂O in CH₂Cl₂ was pressurized with 10 bar D₂ and exposed to sunlight. To follow the formation of HOD, ²H NMR spectra were recorded after 1, 2, and 4 h of exposure (Figure 4). After 1 h of photolysis, the spectrum showed a resonance at 1.75 ppm corresponding to the dissolved D-enriched water. Its intensity was 0.75 relative to the natural-abundance deuterium in the solvent, CH₂Cl₂, which appears at 5.32 ppm. Within 4 h of exposure to sunlight, this resonance shifted slightly to 1.80 ppm, and its intensity increased to 8.53 times that of the solvent peak, indicating significant exchange between D₂ and H₂O in the presence of **1-SMe**⁺.

Conclusions

The conclusions and mechanistic implications of the above study are summarized as follows. The bioctahedral $Fe^{II}Fe^{II}$ complex, **1-SMe**⁺, face-bridged by three thiolates, (μ -SMe)-

Figure 4. ²H NMR spectra showing the formation of HOD ($\delta = 1.70-1.80$ ppm) in a CH₂Cl₂ solution containing **1-SMe**⁺ as the PF₆⁻ salt, 10 bar D₂, and 2 μ L of H₂O: (a) before exposure to sunlight, (b) after 2 h of photolysis, and (c) after 4 h of photolysis. Relative ratio of (natural abundance, $\delta = 5.32$ ppm) CHDCl₂ and HOD in parentheses.

(μ -pdt), maintains the H/D exchange capability in D₂/H₂O mixtures that was detected for the analogous complex $1-H^+$, face-bridged by a hydride and two thiolates. However, **1-SMe⁺** loses the capability for catalysis of H/D exchange in H₂/D₂ mixtures in anhydrous solution as was demonstrated for 1-H⁺.^{10,15} Our mechanistic proposal for the latter called upon an open site created by H⁻ shift or CO loss, as discussed earlier, and deprotonation of $(\eta^2-H_2)-Fe^{II}$ by the internal H⁻ base. Whether the η^2 -H₂ and the terminal Fe-H exist on the same Fe^{II} or on adjacent atoms (binuclear activation) depends on whether a CO loss event is concomitant with μ -H \rightarrow t-H conversion. However, such bridge breakage is either excluded or nonproductive in the case of **1-SMe⁺**, as conversion of μ -SMe to μ -H was not observed when 1-SMe⁺ was pressurized with H₂. This is consistent with the fact that μ -SMe⁻ is a stronger bridging ligand than μ -H⁻, suggesting that the open site needed for H₂ binding in 1-SMe⁺ comes from CO loss. Furthermore the elongated Fe···Fe distance of ~ 3.1 Å in **1-SMe**⁺ relative to 2.6 Å in **1-H**⁺ would prevent involvement of both metals in the H_2 activation process. The rigidity of the bidentate chelating propanedithiolate bridge is expected to prohibit further elongation of the Fe---Fe distance and flattening of the butterfly Fe_2S_2 core to a diamond shape, as seen in $L_4Fe^{II}(\mu$ - Scheme 1

SR)₂Fe^{II}L₄ complexes, where the Fe^{II} \cdots Fe^{II} distance expands to ~3.5 Å.²³

For both **1-H**⁺ and **1-SMe**⁺, an open site is required, as indicated by the need of photolysis for H₂ activation by the external base, H₂O. The creation of an open site in these complexes is consistent with the lability of the CO's indicated by ¹³CO/CO exchange under photolysis by sunlight for both **1-H**⁺ and **1-SMe**⁺. A compatible mechanism is presented in Scheme 1, where the open site is depicted trans to the μ -SMe, in analogy with the open site in the H₂ase binuclear active site. Formation of the (η^2 -H₂)-Fe^{II} interaction is wellprecedented, as is the enhanced acidity of the metal-bound H₂.¹⁶

Thus, the two binuclear model complexes $1-H^+$ and **1-SMe⁺** mimic the H/D exchange activity of the [Fe]H₂ase enzyme in that both demonstrate H₂ (or D₂) uptake and heterolytic cleavage by D₂O (or H₂O) under photolytic conditions. The singular requirement for these processes is an open site on an Fe^{II} center. A built-in hydride is not needed for H/D exchange reactivity in D_2/H_2O or in H_2/D_2 mixtures in the presence of water; it is needed for anhydrous conditions where the mechanism of H₂ activation calls upon cooperation between the two metal sites in true binuclearity. We propose that the **1-SMe⁺** model localizes reactivity on one Fe center and engages the second iron only for thiolate ligand modification, maintaining the low-spin Fe^{II}, d⁶ configuration conducive to η^2 -H₂ binding. Thus, the reactivity scenario and structural design that is reasonable for the enzyme active site is an attractive archetype for the mechanism for the model complexes.

Both [Fe]H₂ase and [NiFe]H₂ase appear to have been designed, protein engineered, to have an open site on iron in their catalytic active sites. Whether both classes of metalloenzymes follow the same mechanism of H₂ uptake on Fe^{II} and cleavage or H₂ formation and evolution from an $(\eta^2$ -H₂)Fe^{II} species is not at all clear. Convincing experiments by Sellmann, Geipel, and Moll²⁴ demonstrated the possibility of D₂ activation at a nickel(II) thiolate under anhydrous conditions, resulting in D⁺/D⁻ cleavage and formation of Ni–D and nickel-bound RSD in a mononuclear nickel

⁽²³⁾ Liaw, W.-F.; Lee, N.-H.; Chen, C.-H.; Lee, C.-M.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 2000, 122, 488.

⁽²⁴⁾ Sellmann, D.; Geipel, F.; Moll, M. Angew. Chem., Int. Ed. 2000, 39, 561.

complex. Would an adjacent Fe^{II} center positioned to trap and hold H₂ in close proximity to Ni–SR enhance this activity? Such a reaction scenario, first expressed by Fontecilla-Camps and co-workers,^{3c} is an attractive possibility in the enzyme active site.

Acknowledgment. We acknowledge financial support from the National Science Foundation (Grants CHE-9812355, CHE-0111629, and CHE 85-13273 for the X-ray diffractometer and crystallographic computing system) and contributions from the R. A. Welch Foundation. We also thank Dr. Joseph Reibenspies for his assistance in the X-ray crystal structure analysis.

Supporting Information Available: Molecular structure and X-ray crystallographic tables for **1-SMe**⁺. This material is available free of charge via the Internet at http://pubs.acs.org. IC026005+

2494 Inorganic Chemistry, Vol. 42, No. 8, 2003